CHEMISTRY

UNIT 2(IAL) 2019 — 2023

Chapter 1	Structure, Bonding And Introduction To Organic Chemistry				
Chapter 2	Energetics, Group Chemistry, Halogenoalkanes And Alcohols	Page 1			
Chapter 3	Practical Skilss In Chemistry I				
Chapter 4	Rates, Equilibria And Further Organic Chemistry				
Chapter 5	Transition Metals And Organic Nitrogen Chemistry				
Chapter 6	Practical Skills In Chemistry II				
	ANSWERS	Page 261			

	CITICITY 1 1 (D CT 1 T)	g 2010	~ 1 \		G GI .	** 1 11 4 141 1 1
1	■ (WCH11/2(IAL)	Summer 2019 (JI) =	Energetics.	Group Chemistry.	. Halogenoalkanes And Alcohols

Calcium carbonate reacts with hydrochloric acid.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

Which factor does **not** affect the rate of this reaction?

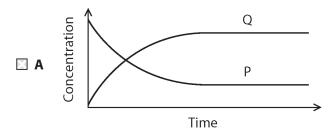
- A concentration
- B pressure
- C surface area
- **D** temperature

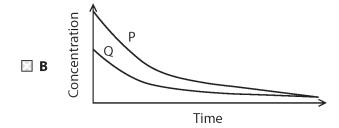
2019 - 2023 Powered By: www.exam-mate.com

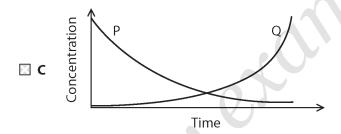
2 - (WCH11/2(IAL)_Summer_2019_Q2) - Energetics, Group Chemistry, Halogenoalkanes And Alcohols

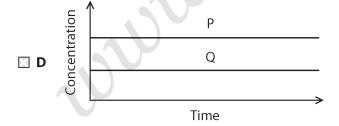
The rate of a reaction doubles for each 10 K increase in temperature. If the temperature of this reaction is increased from 298 K to 358 K the rate of the reaction increases by a factor of

- B 12
- **D** 64


2019 - 2023 Powered By: www.exam-mate.com


3 - (WCH11/2(IAL)_Summer_2019_Q3) - Energetics, Group Chemistry, Halogenoalkanes And Alcohols


A large amount of P is added to a small amount of Q. A reversible reaction occurs in which P reacts to form Q.


$$P \mathrel{\rightleftharpoons} Q$$

Which graph shows how the concentrations of P and Q change as the reaction reaches equilibrium?

 $\textbf{4} \quad \textbf{-} \ (\text{WCH11/2(IAL)_Summer_2019_Q4}) \quad \textbf{-} \ \textit{Energetics, Group Chemistry, Halogenoalkanes And Alcohols}$

Which equilibrium shifts to the right-hand side when the pressure in the system **decreases** at constant temperature?

- \square A $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
- \blacksquare **B** $F_2(g) + H_2(g) \rightleftharpoons 2HF(g)$
- \square **C** $C_6H_6(g) + 3H_2(g) \rightleftharpoons C_6H_{12}(g)$
- \square **D** 2NOCl(g) \rightleftharpoons 2NO(g) + Cl₂(g)

= (WCH11/2(IAL)_Summer_2019_Q5) = Energetics, Group Chemistry, Halogenoalkanes And Alcohols					
Potassium chloride reacts with concentrated sulfuric acid, producing misty fumes. It can be deduced that					
A sulfuric acid is acting as an oxidising agent					
■ B chloride ions are acting as an oxidising agent					
C hydrogen chloride is formed in the reaction					
☑ D chlorine is formed in the reaction					

2019 - 2023 5 Powered By: www.exam-mate.com

6 - (WCH11/2(IAL)_Summer_2019_Q6) - Energetics, Group Chemistry, Halogenoalkanes And Alcohols

The oxidation number of sulfur in the sulfate ion, SO_4^{2-} , is

- $\mathbf{A} 2$
- B +4
- C +6
- □ +8

2019 - 2023 6 Powered By: www.exam-mate.com

Which of these is a disproportionation reaction?

- \square A 2NaOH + H₂SO₄ \rightarrow Na₂SO₄ + 2H₂O
- **B** 6NaOH + 3Br₂ \rightarrow 5NaBr + NaBrO₃ + 3H₂O
- \square C 2NaOH + 2Al + 2H₂O \rightarrow 2NaAlO₂ + 3H₂
- \square **D** NaOH + CO₂ \rightarrow NaHCO₃

8 - (WCH11/2(IAL)_Summer_2019_Q8) - Energetics, Group Chemistry, Halogenoalkanes And Alcohols

Which of these sulfates is the **least** soluble in water?

- A CaSO₄
- ☑ B BaSO₄
- \square **C** K₂SO₄
- ☑ D Rb₂SO₄

Powered By: www.exam-mate.com 2019 - 2023 8

9 - (WCH11/2(IAL)_Summer_2019_Q9) - Energetics, Group Chemistry, Halogenoalkanes And Alcohols

Use the data shown.

$$\mathsf{CH_4}(g) + 2\mathsf{F}_2(g) \to \mathsf{CF_4}(g) + 2\mathsf{H}_2(g) \qquad \Delta H^\Theta = -858\,\mathsf{kJ}\,\mathsf{mol}^{-1}$$

$$C(s) + 2F_2(g) \rightarrow CF_4(g)$$
 $\Delta H^{\Theta} = -933 \text{ kJ mol}^{-1}$

What is the standard enthalpy change of formation of methane (CH₄) in kJ mol⁻¹?

- **A** -1791
- ☑ B -75
- **D** +1791

Which equation represents the standard enthalpy change of atomisation of bromine?

- \square **A** $Br_2(g) \rightarrow 2Br(g)$
- \blacksquare **B** Br₂(l) \rightarrow 2Br(g)
- \square **C** $\frac{1}{2}Br_2(l) \rightarrow Br(g)$
- \square **D** $\frac{1}{2}Br_2(g) \rightarrow Br(g)$

2019 - 2023 Powered By: www.exam-mate.com

ANSWERS

2019 - 2023 261

A-LEVEL EDEXCEL	CHEMISTRY - 2 IAL	CH2 - Energetics, Group Chemistry,
1 - (WCH11/2(IAL)_Summer_2019_Q1) - Energy	etics, Group Chemistry, Halogenoalkanes And Alcohols	
В		
2 - (WCH11/2(IAL)_Summer_2019_Q2) - Energe	etics, Group Chemistry, Halogenoalkanes And Alcohols	
D		
3 - (WCH11/2(IAL)_Summer_2019_Q3) - Energy	etics, Group Chemistry, Halogenoalkanes And Alcohols	
A		
4 - (WCH11/2(IAL)_Summer_2019_Q4) - Energe	etics, Group Chemistry, Halogenoalkanes And Alcohols	
D	•	x Q •
5 - (WCH11/2(IAL)_Summer_2019_Q5) - Energe	etics, Group Chemistry, Halogenoalkanes And Alcohols	
С		
6 - (WCH11/2(IAL)_Summer_2019_Q6) - Energe	etics, Group Chemistry, Halogenoalkanes And Alcohols	
С		
7 - (WCH11/2(IAL)_Summer_2019_Q7) - Energy	etics, Group Chemistry, Halogenoalkanes And Alcohols	
В		
8 - (WCH11/2(IAL)_Summer_2019_Q8) - Energe	etics, Group Chemistry, Halogenoalkanes And Alcohols	
В		
9 - (WCH11/2(IAL)_Summer_2019_Q9) - Energe	etics, Group Chemistry, Halogenoalkanes And Alcohols	
В		
10 - (WCH11/2(IAL)_Summer_2019_Q10) - Ene	ergetics, Group Chemistry, Halogenoalkanes And Alcohols	
В		