IB DIPLOMA Topical Past Papers

PHYSICS

HL PAPER 2

2017 — 2023

Chapter 1	Measurements & Uncertainties	Page 1
Chapter 2	Mechanics	Page 6
Chapter 3	Thermal Physics	Page 58
Chapter 4	Oscillations & Waves	Page 93
Chapter 5	Electricity & Magnetism	Page 155
Chapter 6	Circular Motion & Gravitation	Page 214
Chapter 7	Atomic, Nuclear & Particle Physics	Page 246
Chapter 8	Energy Production	Page 298
Chapter 9	Wave Phenomena	Page 319
Chapter 10	Fields	Page 361
Chapter 11	Electromagnetic Induction	Page 390
Chapter 12	Quantum & Nuclear Physics	Page 438
v	ANSWERS	Page 479

	udent is investigating a method to measure the mass of a wooden block by timing the od of its oscillations on a spring.	
(a)	Describe the conditions required for an object to perform simple harmonic motion (SHM).	
(b)	A 0.52 kg mass performs simple harmonic motion with a period of 0.86s when attached to the spring. A wooden block attached to the same spring oscillates with a period of 0.74s.	
	frictionless surface Calculate the mass of the wooden block.	
(c)	In carrying out the experiment the student displaced the block horizontally by 4.8 cm from the equilibrium position. Determine the total energy in the oscillation of the wooden block.	
(c)	from the equilibrium position. Determine the total energy in the oscillation of the	
(c)	from the equilibrium position. Determine the total energy in the oscillation of the	
(c)	from the equilibrium position. Determine the total energy in the oscillation of the	
(c)	from the equilibrium position. Determine the total energy in the oscillation of the wooden block.	
(c)	from the equilibrium position. Determine the total energy in the oscillation of the wooden block.	

(d)	A second identical spring is placed in parallel and the experiment in (b) is repeated. Suggest how this change affects the fractional uncertainty in the mass of the block.	[
	direction of wave	
	displacement to the right	
	displacement to the left distance	
	A point on the graph has been labelled that represents a point P on the spring.	
	(i) State the direction of motion of P on the spring.	

(ii) Explain whether P is at the centre of a compression or the centre of a rarefaction. [2]

- 2 (PHYSI/20_HL_Winter_2017_Q3) Atomic,nuclear & Particle Physics, Quantum & Nuclear Physics (ahl), Measurements & Uncertainties
 - (a) The Feynman diagram shows electron capture.

(i) State and explain the nature of the particle labelled X.

(ii) Distinguish between hadrons and leptons.

[2]

2017 - 2023 4 Powered By: www.exam-mate.com

(d) Electron diffraction experiments indicate that the nuclear radius of carbon-12 $\binom{12}{6}$ C) is 2.7×10^{-15} m. The graph shows the variation of nuclear radius with nucleon number. The nuclear radius of the carbon-12 is shown on the graph.

(i) Determine the radius of the magnesium-24 ($^{24}_{12}$ Mg) nucleus. [2]

 · · · · · · · · · · · · · · · · · · ·

- (ii) Plot the position of magnesium-24 on the graph. [1]
- (iii) Draw a line on the graph, to show the variation of nuclear radius with nucleon number. [2]

ANSWERS

1 - (PHYSI/21_HL_Summer_2017_Q7) - Oscillations & Waves, Measurements & Uncertainties

а	acceleration/restoring force is proportional to displacement ✓
"	and in the opposite direction/directed towards equilibrium ✓
b	ALTERNATIVE 1
	$\frac{T_1^2}{T_2^2} = \frac{m_1}{m_2} \checkmark$
	mass= 0.38 / 0.39 «kg» ✓
	ALTERNATIVE 2
	«use of $T = 2\pi \sqrt{\frac{m}{k}}$ » $k = 28$ «Nm ⁻¹ » ✓
	«use of $T = 2\pi \sqrt{\frac{m}{k}}$ » $m = 0.38 / 0.39$ «kg» ✓
С	$\omega = \frac{2\pi}{0.74} = 8.5 \text{ wrads}^{-1} $
	total energy = $\frac{1}{2} \times 0.39 \times 8.5^2 \times \left(4.8 \times 10^{-2}\right)^2$
	= 0.032 «J» √
d	spring constant/k/stiffness would increase ✓
	T would be smaller ✓
	fractional uncertainty in ${\cal T}$ would be greater, so fractional uncertainty of mass of block would be greater ${\bf \checkmark}$

е	i	left ✓
	ii	coils to the right of P move right and the coils to the left move left ✓ hence P at centre of rarefaction ✓

2017 - 2023 480 Powered By: www.exam-mate.com

2 - (PHYSI/20_HL_Winter_2017_Q3) - Atomic,nuclear & Particle Physics, Quantum & Nuclear Physics (ahl), Measurements & Uncertainties

		 	
а	i	«electron» neutrino ✓	Do not allow antineutrino
		it has a lepton number of 1 «as lepton number is conserved» ✓	
		it has a charge of zero/is neutral «as charge is conserved»	Do not credit answers referring to energy
		OR	
		it has a baryon number of 0 «as baryon number is conserved» ✓	
а	ii	hadrons experience strong force	Accept leptons experience the weak force
		OR	Allow "interaction" for "force"
		leptons do not experience the strong force ✓	
		hadrons made of quarks/not fundamental	
		OR	
		leptons are not made of quarks/are fundamental ✔	
		hadrons decay «eventually» into protons	
		OR	
		leptons do not decay into protons ✓	

b	i	«high energy particles incident on» thin sample ✓ detect angle/position of deflected particles ✓ reference to interference/diffraction/minimum/maximum/numbers of particles ✓	Allow "foil" instead of thin
b	II	$\lambda \propto \frac{1}{\sqrt{E}}$ OR $\lambda \propto \frac{1}{E}$ \checkmark so high energy gives small $\lambda \checkmark$ to match the small nuclear size \checkmark Alternative 2 $E = hf$ /energy is proportional to frequency \checkmark frequency is inversely proportional to wavelength/ $c = f\lambda \checkmark$ to match the small nuclear size \checkmark Alternative 3 higher energy means closer approach to nucleus \checkmark to overcome the repulsive force from the nucleus \checkmark so greater precision in measurement of the size of the nucleus \checkmark	Accept inversely proportional Only allow marks awarded from one alternative
С		two analogous situations stated ✓ one element of the analogy equated to an element of physics ✓	eg: moving away from Earth is like climbing a hill where the contours correspond to the equipotentials Atoms in an ideal gas behave like pool balls The forces between them only act during collisions

2017 - 2023 481 Powered By: www.exam-mate.com

d	i	$R = 2.7 \times 10^{-15} \times 2^{\frac{1}{7}} \checkmark$ $3.4 - 3.5 \times 10^{-15} \text{ mm} \checkmark$	Allow use of the Fermi radius from the data booklet
d	ii	correctly plotted ✓	Allow ECF from (d)(i)
d	***	single smooth curve passing through both points with decreasing gradient ✓ through origin ✓	nuclear radius / 10 ⁻¹⁵ m 2- 1- 0 0 12 24 nucleon number